Self-Reporting Degradable Fluorescent Grafted Copolymer Micelles Derived from Biorenewable Resources

نویسندگان

  • Amandine Noel
  • Yannick P. Borguet
  • Karen L. Wooley
چکیده

A series of hydrolytically degradable fluorescent poly(ferulic acid-co-tyrosine)-g-mPEG graft copolymers were synthesized and shown to undergo self-assembly in aqueous media to yield fluorescent micelles. The polymers and their micellar assemblies exhibited greater fluorescence emission intensity than did their small molecular building blocks, which provides a self-reporting character that has potential for monitoring the polymer integrity and also for performing in theranostics applications. The amphiphilic graft-copolymers were synthesized by Cu-assisted azide-alkyne "click" addition of azido-functionalized mPEG polymers onto fluorescent degradable hydrophobic copolymers displaying randomly distributed alkyne side-chain groups along their biorenewably derived poly(ferulic acid-co-tyrosine) backbones. The morphologies and photophysical properties of the supramolecular assemblies generated in aqueous solutions were evaluated by DLS, TEM, AFM, and steady-state optical spectroscopies. The 15-30 nm sized micelles behaved as broad-band emitters in the 350-600 nm range, which highlights their potential as self-reporting nanomaterials for in vitro studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrolytic degradation of poly(ethylene oxide)-block-polycaprolactone worm micelles.

Spherical micelles and nanoparticles made with degradable polymers have been of great interest for therapeutic application, but degradation-induced changes in a spherical morphology can be subtle and mechanism/kinetics appears poorly understood. Here, we report the first preparation of giant and flexible worm micelles self-assembled from degradable copolymer poly(ethylene oxide)-block-polycapro...

متن کامل

Formation and structure of ionomer complexes from grafted polyelectrolytes

We discuss the structure and formation of Ionomer Complexes formed upon mixing a grafted block copolymer (poly(acrylic acid)-b-poly(acrylate methoxy poly(ethylene oxide)), PAA(21)-b-PAPEO(14)) with a linear polyelectrolyte (poly(N-methyl 2-vinyl pyridinium iodide), P2MVPI), called grafted block ionomer complexes (GBICs), and a chemically identical grafted copolymer (poly(acrylic acid)-co-poly(a...

متن کامل

Dual effect of thiol addition on fluorescent polymeric micelles: ON-to-OFF emissive switch and morphology transition.

The morphology transition from micelles to vesicles of a solution-state self-assembled block copolymer, containing a fluorescent dye at the core-shell interface, has been induced by an addition-elimination reaction using a thiol, and has been shown to be coupled to a simultaneous ON-to-OFF switch in particle fluorescence.

متن کامل

Optimization of self-assembling properties of fatty acids grafted to methoxy poly(ethylene glycol) as nanocarriers for etoposide.

The objective of this work was to study the effect of fatty acid chain length grafted to methoxy poly(ethylene glycol) (mPEG) on self assembling properties of micelles for etoposide delivery. Three amphiphilic copolymers were synthesized using mPEG, myristic acid, stearic acid and behenic acid through an esteric linkage. The particle size and zeta potential of the micelles were determined by th...

متن کامل

Uptake of Etoposide in CT-26 Cells of Colorectal Cancer Using Folate Targeted Dextran Stearate Polymeric Micelles

Targeted drug delivery using folate receptors is one of the most interesting chemotherapeutic research areas over the past few years. A novel folate targeted copolymer was synthesized using dextran stearate coupled to folic acid. FT-IR and NMR spectroscopy were used to confirm successful conjugation. Micelles prepared using this copolymer were characterized for their particle size, zeta potenti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015